
respect to volume) injection of cold drops into the vapor in the case of an emergency pres- 

sure increase. 

In the absence of phase transitions the vapor pressure also decreases when x: < i and 
T~o > Tao, but just because of its cooling due to thermal conductivity. 

The solution for the conditions III in the case of x~ = 0.i (aa = 0.8 | i0 -=) is pre- 
sented in Figs. 5 and 6. Evaporation of the particle occurs in the system. The temperature 
curves 1-5 in Fig. 5 correspond to the instants of time T = 0.01, 2, 15, 50, and ~. The 
pressure in the system increases from po = 1 to p = 1.03 bar and then decreases to p = 0.98 
bar. This decrease in the pressure is associated with the fact that phase transition is 
practically discontinued but heat exchange still occurs (see Fig. 6). We note that when x:< 
i condensation is not always replaced by evaporation under conditions I. 

The particle size varied little in all the alternatives discussed. In the case x: = i 
(infinite volume of vapor) this circumstance is associated with the fact that the calcula- 
tions were performed prior to the emergence into quasi-time-independent conditions. One can 
use the time-independent solution (2.1) to describe the subsequent behavior of the system, as 
has already been pointed out. 

In the "cell" formulation the small variation of the radius prior to the instant of es- 
tablishment of equilibrium is due to the fact that alternatives with a small vapor mass con- 
tent in the cell, x~ = 0.I, were discussed. 
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DYNAMICS OF A CYLINDRICAL CAVITY IN A COMPRESSIBLE LIQUID 

V. K. Kedrinskii and V. T. Kuzavov UDC 532.5.013.2+534.222.2 

The equation of one-dimensional pulsation of a cylindrical cavity in a compressible liq- 
uid was derived in [i, 2] within the framework of the approximate theory of Kirkwood--Bethe 
[3], which is based on the approximation by the function G = r~/a~ of an invariant propagat- 
ing along a characteristic at a velocity c + u, where ~ = m + u2/2 is the kinetic enthalpy, 

=~ dp/p is the enthalpy, u is the velocity of a fluid particle, r is the coordinate~ and 

c is the local speed of sound. 

In the derivation of this equation 

0 [ r t l  2 (o) § g~/2)] = - -  (C ~- ~) 
Ot 

(I) 

the condition for G was used, as well as the continuity and momentum conservation equations, 
on the basis of which the replacement of partial derivatives by total ones was made in (i) 
[2]. The pulsation equation of the cavity is derived in the following form (we set r = R, 
u = dR/dr) : 

R [ l  - -  (dR/dt)/c]d~R/dt 2 + (3 /4 ) (dR/d t )  2 [1 - -  (dR/dt)/3c] = 

= ~ [ 1  + (dR/dt)/c]/2 + R ( d ~ / d t ) [ t - -  (dR/dt)/c]/c, ( 2 )  
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where R is the cavity radius and t is the time. The value of the enthalpy ~ on the liquid 
side of the cavity wall is determined on the basis of the Tait equation [3] in the form 

c o =  ( n - ~ ) t ) .  i-~ -- 

where B = 3050 atm and n = 7.15 are constants, Po is the fluid density, p~ is the pressure 
at infinity, p(R) is the pressure in the cavity, and the local speed of sound c is determined 
in the form 

/ p 
c = Co ~t  -~ �9 ~ / , 

where co is the speed of sound in an undisturbed liquid. 

This paper is devoted to the experimental investigation of the pulsation parameters of 
a cylindrlcal cavity and to an investigation of the characteristics ofthe Rich-~innelapprox- 
imatlon [3], which is based on neglecting the term ~/4ra(r = rt/a~ and �9 is the velocitypo- 
tential) in the wave equation, which permits (with the use of the Kirkwood--Bethe model) ob- 
taining Eq. (i). 

An analysis of the Rich-Ginnel assumption carried out for the case of an incompressible 
liquid (it does not seem possible to make similar estimates for a compressible liquid) has 
shown that it allows a definite arbitrariness in the choice of the numerical coefficient in 
front of (dR/dt) ~ in (2). Actually, one can use the following ways to construct an approxi- 
mate equation of the pulsation of a cylindrical cavity in an incompressibleliquid. The first 
way assumes a limiting transition (c + =) in (2), whereby an equation of the form 

3 (dB/dt)~ = 0)/2 R (d~B/dt ~) + -$ (3) 

is obtained. The second way consists of the fact that within the framework of the adopted 
approximation, in which the velocity potential is defined in the form ~ = 2R'/a(dR/dt)/r ~/a, 
expressions are found for the kinetic energy of the liquid and the potential energy of the 
gas, and, on the basis of the energy conservation law, the first integral of the equation of 
motion is written 

29o [R 2 (dR~dr) z - -  R~ (dR/dt )~]  = poR~ [t - -  ( R / R o ) z - z v I / ( V  - -  1) @ p ~  (JR2o - -  R~) ,  

where po is the initial pressure in the cavity. Differentiating this equation with respect 
to R, we obtain the cavity pulsation equation in the form 

B(d2B/d t  ~) 4- (dB/dt)  ~ -= 0)/2. (4) 

The third way consists of the fact that the expression for the potential cited above is 
substituted into the Cauchy--Lagrange integral, which takes the form 

Tt (d~B/dt  ~) + 5 (dB /  dt)~ = 0)/2 ( 5 )  

on the cavity wall (r = R). 

Thus, in the case of cylindrical symmetry the constraints imposed on the wave equation 
result in some indeterminacy of the numerical coefficient in front of (dR/dr) 2, whose values 
lie in the range 0.75-1.25. The fact that the form of all three equations (3)-(5) is identi- 
cal and they agree, for example, in the case of large accelerations (initialstage ofan explo- 
sion), when it is possible to neglect the square of the velocity, is a positive factor. It 
is possible to refine the value of this coefficient (let us denote it as 8) from a comparison 
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of the calculated and experimental data of the pulsation of a cavity with the detonation 
products affiliated with the underwater explosion of cylindrical charges. 

A numerical calculation of Eq. (2) for three values of 8 and experimental investigations 
for the case of an explosion of nonstandard cylindrical charges made of hexogen with a diam- 
eter d = 0.65 and 1.65 mm with a copper casing (the charge density p, = 1.55 g/cm 3 and the 
detonation ra1:e D = 7.7 km/sec are determined experimentally, and the ratio of the charge 
length to its radius is on the order of 103 ) have been performed with the goal of determining 
the parameters of an explosion cavity and checking Eq. (2). 

Since the comparison with the experimental data was carried out for charges of the indi- 
cated type, only the case of an "instantaneous" explosion was considered in the calculation. 
The initial parameters of the problem (density and speed of sound in the detonation products 
and the liquid, pressure at the contact explosion and its velocity) were determined from the 
decay condition of an arbitrary explosion. The calculation was carried out for two types of 
isentropes: ~, = 3 = const and a variable y taken from [4] for the case of an "instantaneous" 

explosion (the density of the explosion products p is equal to the density of the charge, and 
the internal energy is equal to the heat of the explosion). Tabular data[4] areapproximated 
in the following way: 

0,625 ~ p-1 ~ t.66, p ~ O-~.Ts, 

t,66 ~ p-i ~ 2.5t, p ,., p-2.~4, 

2.5t ~ p-1 ~ 5.0, p N p-1.~3 

5.0 ~ p-1 ~ 20.0; p N p-l.a,, 

p--1 > 20.0, p ,.~ p-l.~s. 

Here the tabular data [4] for p, = 1.6 g/cmS, �9 which are closest to the experimental values, 
are used. At the same time a value for the pressure of p = 1.295 �9 i0" atm corresponds to 
the value p-1 = 0.625. 
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The results of the calculation of the expansion of the cavity [y(h) = R/Ro] are presented 
in Fig. 1 in the scale of the charge radius Ro as a function of the time h = tco/Ro: curves 
i, i', and I" (for 8 = 0.75, I, and 1.25, respectively) are obtained in the case y = 3, and 
curves 2, 2', and 2" are for variable y; the slope of the experimental curve ~(h) is denoted 
by a dashed line, and the experimental value of the position of the maximum y is denoted by 
the cross. The relation 2' is illustrated especially by dots in order to distinguish the 
curve which is closest to the experimental data. Each relation is limited on the right by 
a vertical line which determines the instant of cessation of the maximally expanded cavity. 

As one should have expected, the cavity parameters calculated for the case of a variable 
y turned out to be nearest to the actual ones. It is evident from the graphs presented that 
the slope of the curves y(h) decreases as the coefficient 8 increases: It amounts to 0.55 
for the curves 2 in the case of 8 = 0.75, 0.5 for 8 = I, and 0.49 for 8 = 1.25. The slope 
of the experimental curve is 0.45. 

The same relation 2', whose plot is continued and includes three pulsations of the cavi- 
ty, is presented in Fig. 2. Here the experimental data are plotted for comparison: The 
crosses are for a charge with diameter d = 1.65 mm, and the dots are for d = 0.65 ram. The 
agreement of calculation and experiment in the region y ~i0 can be considered satisfactory. 

Let us cite (in relative and absolute quantities) the principal characteristics of the 
pulsation of a cylindrical cavity obtained from the experimental data (denoted by an aster- 
isk below) and from the calculation in the following: 

y , = l : 5 h ~  '~5 for 3 0 < h , < ~ l O  ~, 

R ,  = 321 R~'~l~ "45 cm for 2 .10-4Ro  ~ t o ~ 6.67 �9 lO-~Roc, 

: 3 . 1 o , ( t 2 , ,  = o.2Ro ), 3 .  : o .2RoO) ,  

E.,1---- 0 . 2 2 E  o,E1 : 0.218Eo, E2 = 0 .14Eo,  E~ : 0 . I t E o ,  

T,,1 = T1 -~ 0ARoc, T.2 = 0.33Roc, T 3 ---- 0.3Roe, 

where the subscripts I, 2, and 3 denote the number of the pulsation cycle; the maximum val- 
ues of the parameters are denoted by a_superscript 0; Ro is in cm; Eo is the heat of explo- 
sion of the explosives per unit length; E is the energy remaining in the cavity with the 
detonation products after the expansion (E,,: is calculated over the entire maximum of the 
cavity volume with the detonation products); and T is the pulsation period. 

The experimental and calculated values obtained for E offer the possibility of writing 
expressions for the pulsation periods of a cylindrical cavity in a general form in terms of 
the initial energy of the explosives Eo 

T~ ~ 1.635 (i:,oo.~Eo)l"2p.~- i, 

where ~i = 0.218, 0.14, and 0.ii is the fraction of the energy of the explosives which is ex- 
pended in the radial motion of liquid flow in the process of the first, second, and third 
pulsations. 

Comparison of the empirical and calculated expressions obtained in this paper for the 
cavity pulsation parameters and the energy distribution among the detonation products and the 
shock wave in the case of cylindrical symmetry of an underwater explosion confirms the real- 
ity of Eq. (2) and permits concluding the advisability of using the coefficient value 8 = 1 
instead of 0.75 in front of (dR/dr) a. 
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EXPANSION OF GAS CAVITY IN BRITTLE ROCK WITH 

A VIEW TO DILATATION PROPERTIES OF SOIL 

S. Z. Dunin and V. K. Sirotkin UDC 539.374 

The experimental data of [i, 2] on blasts in rocks indicate that the mass velocity of 
the rock behind the front of the shock wave, comminuted by that shock wave, is described by 
the relation 

c N ~  . . . .  . n :  1 . 5 - i . 8 .  

The explanation of such a relationship may be connected with the effect of dilatation in 
the comminuted rock, the effect consisting of the dependence of the specific volume on the 
plastic shear deformations [3]. 

The equation o f  continuity and the relationships imposing kinematic limitations on the 
velocity components [I, 3] 

d 9 ' p d t  " div t" : O, (I) 

form a closed system for determining the velocity and density of the soil behind the front of 
the shock wave. Here p, v, It, and I~' are the density, ve!ocity, first and second invariants 
(deviator part:) of the tensor of the deformation rate, and h is the dilatation rate. 

The solu~ion of the system of equations (I) in the spherical-symmetrical case with h = 
const leads to the following dependence of the velocity and density on the coordinates and 
the time : 

v(r, t) = Z ( t ) r n ;  

9(r ,  t) = p- (ro) (ro  r ) ~ - <  n = (2 -- A):( l  --b A), (2) 

where r, ro are the running and initial coordinates, respectively, of the particle; p-(ro) is 
the density of the material at point ro at the instant the shock wave passes through that 
point; X(t) = ana = v(R)Rn; a and R are the radii of the cavity and of the front of the shock 
wave at the instant of time t; v(R) is the mass velocity of the particles behind the front of 
the shock wave 

v (R) = ~ ( n )  k ,  ~ (R) = Y (Rt - ~. 
p~(R!  

p~ is the density of the soil after arrival of the shock wave. 

We assume that the soil behind the shock wave is a plastic medium obeying the Mises-- 
Schleicher condition 

~,. - -  % = k -:- re(Or T '  2 ~ o ) .  

The equation of motion in Lagrange variables can be written in the form 

for Po -~-  ~ r ~r ( r )  @ ~  , a =  2m§ (3) 
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